6.1.17
Falšování způsobů produkce a zpracování potravin
Ing. Helena Čížková
NahoruÚvod
Kvalita potravinářských výrobků je úzce spojena se způsobem jejich zpracování. Podmínky, za jakých jsou pěstovány rostliny nebo chována zvířata určená pro potravinářské využití, používané způsoby výroby a konzervační postupy zajištující bezpečnost a prodloužení trvanlivosti, ovlivňují většinu fyziologických i chemických změn v surovinách, meziproduktech i finálních výrobcích a významně tak podmiňují jejich senzorické a nutriční vlastnosti. Z pohledu konečného spotřebitele jsou ze zdravotních, etických, náboženských a dalších důvodů některé postupy zpracování preferovány, případně naopak odmítány. Nedostatky nebo nepravdivá tvrzení ve značení způsobu produkce a zpracování potravin tak představují jen jinou podobu klamání spotřebitele. Předkládaná kapitola se zaměřuje na potenciální způsoby falšování v této oblasti, možnosti jejich identifikace a laboratorní postupy kontroly.
Mezi příklady chybně značeného způsobu produkce a zpracování patří:
-
vydávání tepelně ošetřených potravin za čerstvé nebo ošetřené jen šetrnými způsoby konzervace (mléko, ovocné šťávy, perboiled rýže, sušený hrách vydávaný po rekonstituci za hrášek);
-
prezentace původně zmrazených a následně rozmrazených potravin jako čerstvé nebo chlazené (maso, ryby, pečivo);
-
záměna principu výroby (olivový olej, ovocné šťávy, lihoviny);
-
nedeklarovaná konzervace pomocí ionizujícího záření (koření, sušené byliny, kuřecí maso, žabí stehýnka);
-
nepravdivá tvrzení o způsobu produkce (suroviny a výrobky pocházející z organického zemědělství biopotraviny, způsob chovu drůbeže).
Většina způsobů falšování je specifická pro konkrétní potraviny a je diskutovaná v rámci ostatních kapitol, Tabulka 1 uvádí nejběžnější příklady a možnosti průkazu.
Tabulka 1: Potravinářské výrobky charakteristického způsobu výroby a nástroje jejich kontroly
NahoruIonizující záření
Podmínky využití
Podmínky využití upravuje vyhláška č. 133/2004 Sb. , o podmínkách ozařování potravin a surovin, o nejvyšší přípustné dávce záření a o způsobu označení ozáření na obalu. K ošetření povolených potravin a surovin lze použít pouze 3 druhy ionizujícího záření: a) gama záření radionuklidů 60Co nebo 137Cs; b) rentgenové záření o energii nepřevyšující 5 MeV; c) urychlené elektrony o energii nepřevyšující 10 MeV (beta záření), a to v dávkách nepřevyšujících přípustné celkové průměrné absorbované dávky záření (NPD, 0,2–10 kGy podle skupiny potravin). Ionizujícím zářením se ošetřuje především za účelem zničení patogenních organismů a tím snížení nebezpečí nákazy přenášené potravinami a omezení kažení potravin v případech, kde není dostupný jiný konzervační zákrok. Podmínkou je, že ozářením nevznikne zdravotní riziko pro spotřebitele. K dalším výhodám patří, že zpracování nevyžaduje záhřev, a proto dochází jen k nepatrným změnám chuti a vůně a jsou zachovány další atributy čerstvosti potraviny.
Hlavním omezením širšího rozšíření této techniky je obezřetnost spotřebitelů, kteří použití ionizujícího záření špatně přijímají, jednak z (v tomto případě neopodstatněných) obav z indukované radioaktivity nebo s ohledem na další oblasti umělých zdrojů ionizujícího záření (jaderné zbraně, jaderné reaktory). Z technických aspektů patří mezi omezení použití ionizujícího záření následující skutečnosti:
-
Postup by nepoctivým výrobcem mohl být použit k odstranění vysokých počtů kontaminující mikroflóry, z jinak nepřijatelných potravin by byly potraviny schopné prodeje.
-
Postup nemusí působit absolutně proti veškeré mikroflóře a všem jejím formám, pokud jsou zářením potlačeny pouze kazící mikroorganismy a patogenní přežijí, případně výrobek obsahuje mikrobiální toxiny, nemusí být zjevné, že se jedná o zdravotně nebezpečný produkt.
-
Při ozařování může docházet ke ztrátám nutričně významných složek potravin (na úrovni srovnatelné s termosterilací).
Označování
Na potravinách ošetřených ionizujícím zářením se uvede jeden z těchto údajů: "ozářeno" nebo "ošetřeno ionizujícím zářením" (podle nařízení (EU) č. 1169/2011 o poskytování informací o potravinách spotřebitelům).
Metody průkazu použití ionizujícího záření
Vývoji metod vhodných pro detekci ozářených potravin je věnována pozornost od počátku využití této technologie. Zářením při obvyklých dávkách však nejsou produkovány žádné chemické látky, nedochází k žádným významnějším změnám potravin, které by detekci umožnily. V současnosti existuje nebo je vyvíjeno několik postupů, ale žádný z nich není obecně použitelný pro všechny druhy ozářených potravin. V rámci EU jsou k testování doporučovány především metody standardizované Evropským výborem pro normalizaci (anglicky European Committee for Standardization, https://www.cen.eu/ , https://ec.europa.eu/food/safety/biosafety/irradiation/legislation_en ), níže označené kódem EN.
Fyzikální metody detekce ozářených potravin
Elektronovou spinovou rezonanční spektroskopií je možné detekovat volné radikály, které se vlivem ozáření vytvořily v pevných součástech potraviny, např. v kostech. Metoda byla použita při prokazování ozáření u drůbežího a hovězího masa s kostmi, u ryb a korýšů (EN 1786:1996, Detekce ozářených potravin obsahujících kosti – metoda elektronové spinové rezonanční [ESR] spektroskopie). Techniku je možné využít také pro potraviny obsahující celulózu s nízkým obsahem vody (např. pistáciové oříšky, sušená paprika apod., EN 1787:2000, Detekce ozářených potravin obsahujících celulózu ESR spektroskopií) a pro potraviny obsahující vysoký podíl cukru (sušené fíky, mango, papája a rozinky, EN 13708:2001, Detekce ozářených potravin obsahujících krystalický cukr ESR spektroskopií). Postup je nedestruktivní, rychlý, jeho omezení spočívají zejména v ceně zařízení.
Další fyzikální metodou vhodnou k detekci ozářených potravin je termoluminiscence, která spočívá v uvolnění energie zachycené při ozáření v krystalických mřížkách (EN 1788:2001, Termoluminiscenční detekce ozářených potravin, ze kterých lze izolovat křemičité minerály). Krystalické mřížky (schopné zachytit energii záření) mohou být např. prach a nečistoty (na bázi křemičitanů) v koření, minerální látky ze schránek v trávicím traktu korýšů nebo nečistoty v ovoci a zelenině. Minerální látky jsou z potravin izolovány, řízeným způsobem jsou zahřívány a absorbovaná energie je uvolněna ve formě světla (termoluminiscence), které je měřeno. Postup je široce používán, poskytuje nezpochybnitelné výsledky, ale má řadu nevýhod: je pracný, časově náročný, destruktivní, náročný na prostředí, ve kterém se provádí, zařízení musí být kalibrováno radioaktivním zářením, zařízení je investičně náročné aj. Poslední úpravy směřují k využití postupů tzv. fotostimulované luminiscence (EN 13751:2002, Detekce ozářených potravin pomocí fotostimulované luminiscence), v níž je k uvolnění energie používáno pulzní infračervené světlo na místo záhřevu. Modifikovaný postup nevyžaduje izolaci minerálních látek z potraviny, malý vzorek potraviny může být analyzován přímo a výsledek je možné získat během několika minut. Obecná omezení uvedená výše (nutná přítomnost minerálních látek) však platí i pro modifikaci postupu.
Další fyzikální metody zahrnují měření impedance, sledování změn viskozity a elektrického potenciálu, techniky NMR nebo NIR.
Chemické metody detekce ozářených potravin
Chemické postupy jsou omezeny malým rozsahem chemických změn, ke kterým dochází při použití obvyklých dávek záření. Jedna ze standardních metod (EN 1784:2003, Detekce ozářených potravin obsahujících tuk – analýza uhlovodíků pomocí plynové chromatografie) spočívá v analýze uhlovodíků vznikajících v důsledku radiolýzy triacylglycerolů preferenčně v polohách alfa a beta, tj. především uhlovodíků 14:1, 15:0, 16:1, 16:2, 17:0, 17:1 – produktů rozkladu kyseliny palmitové, olejové a stearové. Látky jsou izolovány z potraviny a analyzovány plynovou chromatografií. Degradační produkty jsou tvořeny také v důsledku jiných technologických postupů, ale po ozáření mají charakteristické složení. Metoda byla validována pro průkaz ošetření různých druhů masa a sýru typu camembert (dávky záření 0,5 kGy a vyšší) a pro avokádo, papáju a mango (dávky 0,3 kGy a vyšší).
Příkladem rozkladných produktů, které nevznikají jinak než po ozáření, jsou 2-alkylcyklobutanony odpovídající počtem uhlíků mastné kyselině, jež vznikají rozpadem vazby acyl-kyslík v triacylglycerolech (z kyseliny palmitové vzniká 2-dodecylcyklobutanon, z kyseliny stearové 2-tetradecylcyklobutanon). Obvyklým způsobem analýzy je plynová chromatografie (EN 1785:2003, Detekce ozářených potravin obsahujících tuk – plynová chromatografie/hmotnostní spektrometrie stanovení 2-alkylcyklobutanonů), jsou však popsány i další chromatografické postupy. Test na bázi stanovení 2-alkylcyklobutanonů se osvědčil k detekci ozáření drůbežího, vepřového, hovězího a skopového masa, vaječných melanží, exotického ovoce včetně manga,…